制造业中,人工智能意味着什么?
WFM盖雅工场2017年12月5日

 

咨询公司埃森哲近日发布《人工智能:助力中国经济增长》报告。报告深入研究了人工智能对中国经济的影响,指出到2035年,中国经济年增长率将在人工智能拉动下从6.3%提速至7.9%。

 

我国作为当今的“世界工厂”,制造业的转型对于国家未来的重要性不言而喻。《智能制造发展规划》和《智能制造2025》等国家级战略的及时推出,为整个国家和产业提供了方向和框架的指引;同时各制造行业企业也在积极行动,越来越多的企业开始探索大数据、智能机器人等新技术在制造业领域的应用,探索制造业智能化升级的道路。

 

在这个过程中,制造业如何能有效利用互联网已积累的资源和新技术经验、加速智能化转型的进程,成为我们需要关心的重点问题。

 

盖雅工场自成立以来,专注于劳动力管理,关注自动化和人工智能对劳动力管理带来的影响和变革。为各行业劳动力管理带来新理念,今天,我们给大家分享这篇来自「腾讯研究院」(微信公众号:cyberlawrc)的文章,从互联网企业的角度,为大家解读一二,以下,Enjoy:

 

中国制造业面临的现实问题

  • 「夹心」的压力

虽然从体量上看,2010年以来中国制造业的产值和产量已处于世界首位,取代了美国延续100多年的位置;但从结构上看,中国制造业处于全球制造业价值链的中低端,作为“世界加工厂”赚的是低利润率的“辛苦钱”。

 

 

而随着08年金融危机后国际形势的变化,各国都在想办法重拾制造业的竞争力,处于大体量中低部区域的中国制造业自然受到了它国从各方的夹击:低端方向,南太、印度、墨西哥等高人口低成本市场对制造企业的抢夺日益激烈;高端方向,欧美等发达国家制造业回流形成了遏制。越来越多企业正将工厂搬离中国、或者至少是减少在中国生产

 

  • 「升级」的困难

主动“降级”去和其他发展中国家拼资源和人力成本,对当今中国而言已不可能。未来中国制造业的出路,主要在向高端制造,即向高精密、高质量、高价值的价值链方向升级

 

然而,高端制造的三条主要道路都已被先行者占据:以精密机器能力为核心的德国、以高效人员和组织能力为核心的日本、以及以科学和数据能力为核心的美国。目前中国在三方面均存在不足,能力的培养即需要时间又面临压力。

 

  • 「引入」的代价

随着新一轮制造业格局的争霸开启,主要竞争国都在不遗余力的构建和推广新的框架体系标准,以求主导制造业转型。其中我国产业企业接触多的,应该是德国的工业4.0和美国的工业互联网。这两个框架体系本身没有太大问题,甚至已经建立了相互映射对接的关系,对全球通用发挥了积极作用。关键问题在于这两个框架指导下的企业实践,目前尚未出现真正意义的通用型开放平台,还存在各厂商之间的竞争壁垒,造成厂商之间的设备互联互通困难等问题。

 

而制造业企业在面对厂商时,选择一个厂商可能意味着被锁定在这个厂商的一体化解决方案中,增值服务和替换成本较高,且难以掌握真正的核心技术。

 

正因为如此,中国制造业需要建立自主的智能制造框架标准体系,并鼓励产业和企业自主研发,探索自身的智能化经验,并终汇聚成自身主导的智能制造平台和生态,完成整个制造业的转型和升级。

 

互联网企业如何加持中国智能制造升级

对于中国制造业而言,在自动化流程和工艺水平尚有欠缺,同时物联网、云、大数据和人工智能等新技术爆发的历史节点,拥抱代表新技术的互联网、走两化融合之路是弯道赶追先进制造大国的典范路径。说互联网不懂制造业、或者说制造业大势已去,都是不负责任的说法。真正应该关心的,是如何用好互联网企业在消费市场的经验,来帮助制造业转型升级

 

  • 做好两端服务:提供前端的需求洞察和后端的营销服务

对于大部分互联网企业而言,贴近消费者是其擅长的事、也是对制造企业直接的价值。

 

  • 在消费者需求方面,借助自身业务的消费者行为,加上广义的互联网信息采集工具(如社交媒体聆听),能够比较完整地勾勒出用户画像,帮助制造企业对产品趋势热点进行分析判断;
  • 在营销服务方面,线上的各种营销渠道和即时营销手段,也能够帮助制造企业快速推广产品和提供服务。

 

 

目前这部分的内容已经非常丰富,大型电商平台、第三方大数据分析工具等都在提供相关服务。未来应该考虑的核心问题是,假设将来D2M是必然趋势,那么这些D(Data)归属各制造商更有效率、还是中间平台更有效率?从大数据的价值角度看,大数据维度越多、体量越大,理论上价值含量越高。

 

因此可以认为,未来无论是互联网还是制造企业,构建这样跨企业、跨产品的消费者洞察平台至关重要。现在的平台只能勾勒出比较综合的、或者单维的需求;未来的平台,应可以根据不同行业产品的特点,定位并勾勒出不同的画像,指导不同的产品生产。

 

  • 提供基础设施:协助制造企业向云计算迁移

云计算是互联网发展的基础设施,也成为了部分互联网企业的核心能力,目前已经基本坐实了新IT基础设施的位置。中国制造业要追赶国外发达国家,将整个企业流程尽快向云迁移是必然之路。通过云部署,既能有效降低成本、又有利于促成IT和OT的融合。

 

目前这部分有两条路:互联网企业主导的,通用型云计算基础设施;工业装备和软件企业主导的,专业性云计算基础设施(工业云等)。对互联网企业而言,缺乏工业、制造业的经验是短期较难弥补的短板。

 

因此,做好通用IaaS、发挥自己IT计算经验和特长为其他专业云提供服务,可能是近期较为合理的方式。而向远期看,IaaS之上的工业云PaaS,才是终需要努力打造的核心。而其中涉及各种软硬件接口和数据的标准化,任何一方都难独挑大梁。互联网企业应与优质的工业装备和软件企业等联盟,尽快和国家政府部门共同制定相关的规范和标准,推动大的工业云平台基础设施的成功建立与应用。

 

  • 贡献技术使能:发挥人工智能相关技术能力优势

人工智能技术的再兴起,为中国制造业的弯道超车提供了可能。当前欧美等先进制造国家的制造业技术,主要基于上一代信息处理技术发展,即信息传递的方式以文本为核心。这在机器对机器的交互中问题不大,但在人-机交互中其实比较受限,大量的人经验只能通过文本传递(比如参数输入),实际上并不符合人在操作中视听等感官经验。

 

随着人工智能的发展成熟,语音、图像、视频等的机器识别和交互越来越成为现实,这为整个制造业生产流程、至少是信息传递流程的颠覆创造了机会。试想一下,如果机器能直接通过视频识别发现残次品的问题和位置、并用图像直接叠加显示,能省去多少人用卡尺等反复测量的成本。

 

目前已有越来越多的IT巨头,在其云中提供人工智能API或SDK,以方便其他企业调用和二次开发。对互联网企业而言,提供类似的能力服务也是必然选择。不过从通用AI能力到专用AI应用,中间还有巨大的断层,需要通过与制造业企业联合研发等方式,才能更有效的发挥人工智能的能力。

 

  • 孵化新型制造:以资本和技术孵化新型制造企业

新的工业革命需要投资,而且可能是远比信息革命大的投资(物理资产、人力成本等相对比重大),而投资正是制造业缺乏的东西。这种投资有两方面内容:

 

一是钱,多年来中国制造业利润率的持续走低,使得追求利益大化的资本对制造业板块不太感冒;
二是人,互联网的蓬勃发展吸附了大量的优秀人才,人才决定了技术创新能力,制造业的转型缺乏大量的高质量跨界人才注入。从这个层面看,互联网对制造业的投入是必须也是必然。

互联网对制造业的投资其实空间很大,可以从新型的智能产品切入(如AI音箱),组建项目组或投资创业公司,投入资金、人员和人工智能等技术能力,完全从智能化生产的新角度,自己深入和构建新的制造业流程,并在过程中尝试开发软件工具,终形成新型制造企业的模型和经验。Google自制硬件、Facebook的Area 404硬件实验室等,都初步显示出这种端倪。

 

互联网大潮方兴未艾,人工智能新潮涌起,各行各业都在努力赶潮,避免被时代步伐落下。

 

面对这个极速变化的市场,不仅是制造企业,互联网企业也一样面临颠覆性挑战和机遇。智能时代大幕已经开启,作为工业时代代表的制造业、和信息时代代表的互联网更应主动拥抱与融合,有效利用新技术发展,帮助企业降本增效,实现卓越发展。

 

更多关于人工智能话题文章:

零售业遇上AI,未来真的能够“掏空”你的腰包?

人类未来会是机器人的对手吗?

AI将带你远离Boring Jobs

 

你可能感兴趣:

制造业劳动力管理解决方案

下一篇 文章
劳动力双周刊:面对机器人,白领也很危险?
盖雅工场
劳动力管理系统
智能、高效、易用,是企业劳动力效率管理的工具。
体验DEMO演示

相关产品推荐